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Anhouncements

BIOSC 1540 - Computational Biology
e AO4 is due Friday by 11:59 pm Bioinformatics Exam

Oct 3, 2024

e Exam is next Thursday (Oct 3rd) 100 pints

Please read the following instructions carefully before beginning your assessment.

* Time limit: You have 75 minutes to complete and turn in this assessment.
* Open note: You may use notes, but with the following restrictions:
» Notes must be hand-written on either (1) paper or (2) a tablet with a stylus, then printed.
» You may use a maximum of one sheet of 8.5 x 11 in. paper for notes (front and back allowed).
» Notes must be your own work. Sharing or copying notes from others is strictly prohibited.
» Your name must be clearly written on your notes.
« Mo digital devices: The use of digital devices, including calculators, is not allowed.
* Submission requirements: You must submit both your completed assessment and all notes used.

| agree to follow the above instructions. | affirm that all work on this assessment will be my own
and that | will not give or receive any unauthorized assistance. To have your assessment graded, you
must write your name, sign, and provide your student 1D below.

MName Signature

Student ID



https://pitt-biosc1540-2024f.oasci.org/assessments/assignments/04/

After today, you should be able to

Discuss the importance of normalization and quantification in RNA-seq data analysis.
Explain the relevance of pseudoalignment instead of read mapping.
Understand the purpose of Salmon's generative model.

Describe how salmon handles experimental biases in transcriptomics data.

A A .

Communicate the principles of inference in Salmon.



Let's pause and look at the big picture

Suppose we have isolated a
normal and cancerous cell

We want to identify possible drug targets
based on overexpressed genes

Normal Cancerous

We will use transcriptomics!



Defining our transcriptome

Let's simplify our problem to These represent the only mRNA transcripts we
only three transcripts will find in our cells (i.e., the transcriptome)
| . '
t1 to t3

They have short, medium, and long lengths l3 > l2 > ll



Defining our gene expression

We have the following transcript distribution
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We have to nhormalize our transcriptome
before making comparisons

2 3 4

We can use transcripts fraction

~ (.44

~ (.22 ~ 0.33
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Ratios are sensitive to total amount

2 3 4

— ~ (.22 — ~ 0.33 — ~ 0.44

4 6 5

— ~ 0.2 — ~ 0.4 — =~ 0.
Q = 2027 A0 = ~0.33

Because the cancer cell is transcribing more
overall, we still get changes across the board



Scaling data to "parts per million"”

Real data has more than three transcripts and Small floats require high precision
ratios are substantially smaller (e.g., 0.000001) (i.e., float64) and thus memory

This can make computations and communications challenging, so
we often scale everything to a million to use unsigned integers

Transcript Normal Cancerous
t. 1 222,222 266,666
L. 10°
: y 2 333,333 400,000
Z t 3 444,444 333,333
Total 1,000,000 1,000,000




Wait, what about sequencing depth?

1 to t3

Longer transcripts will have more reads

Read counts for gene

Read per kilobase (RPK) corrects RPK =
this experimental bias through
normalization by gene length

Gene length in kilobases

(Length is usually just the exons)
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RPK example

A to t3

Read counts for gene

RPK; =
"7 Gene length in kilobases




Reads per kilobase of transcript per
million reads mapped

RPKM — 10° Reads mapped to transcript

Total reads - Transcript length

Transcripts per million

RPKM
S RPKM;

TPM = 10°



After today, you should be able to

2. Explain the relevance of pseudoalignment instead of read mapping.
3. Understand the purpose of Salmon's generative model.
4. Describe how salmon handles experimental biases in transcriptomics data.

5. Communicate the principles of inference in Salmon.
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Traditional quantification
uses read mapping

Transcriptome

Reads/Fragments -

We assign each read to single transcript
using our read mapping algorithms

Once aligned, we can count the number
of mapped reads to each transcript
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Bowtie 2 uses
Burrows-Wheeler
Transform to map
and quantify reads

Read Read (everse comolement)
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Spliced Transcripts Alignment
to a Reference (STAR)

Maximum Mappable Prefix (MMP) approach
for fast, accurate spliced alignments

(a) Map Map again
MMP 1§ MMP2
; RNA-seq read
i
|

Finds prefix that perfectly matches reference
then repeats for unmatched regions

exons in the genome

This automatically detects junctions
instead of relying on databases
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Alighnment-based methods are
computationally expensive

Suppose someone took library
books (transcripts) and then
shredded them (reads)

Alignment-based methods need In the context of our analogy, we
to determine the read's exact not only need to find the book
position in the transcript but which page it was from

This takes a long time
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Pseudoalignment finds which
transcript, but not where

Identifies which transcripts are It does not worry about where
compatible with the read, skipping within that transcript it originated
the precise location step

e N - 4 R des
N & q'i'.. Y £ ‘)\WA“ i
;[ £F Sy .

Analogy: Just find books that are compatible
and don't worry about which page
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Alignment
Specifies where exactly in the

transcript this read came from
(e.g., at position 478)

Pseudoalignment

Specifies that it came somewhere
from this transcript (i.e., compatible)
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Bypassing alignment accelerates
quantification

Pseudoalighment: This method, used by tools like Kallisto, skips the full
alignment process. Instead of mapping each read to a specific position,
pseudoalignment identifies which transcripts are compatible with a given read

e Pros: Faster and less resource-intensive
than alignment-based methods

e Cons: It may lack certain details, such as the
position and orientation of reads, which are
useful for correcting technical biases
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After today, you should be able to

3. Understand the purpose of Salmon's generative model.
4. Describe how salmon handles experimental biases in transcriptomics data.

5. Communicate the principles of inference in Salmon.
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Let's understand our problem

Initial sample

Has some number
of transcripts

Fragments -
After PCR amplification = =
and fragmentation

Reads

Sequencing with - — - We have to use reads to
imperfections - - - guantity our initial sample
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What is a generative model?

Generative model: A statistical model that explains how the
observed data are generated from the underlying system

Defines a computational framework that produces
sequencing reads from a population of transcripts

I — —_—————— > —
I

First, we have to define our model
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Salmon's mathematical
definition of a transcriptome

Our whole
transcriptome

Individual Transcript
transcripts counts

T:{(tl,...,tM),(Cl,---acM)}
T M=3
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Salmon's formulation of
transcript abundance

~(31:2 ~62:3 ~C?,:él
[y =200 l» = 300 3 = 400
- 7 1
So far, we have been talking f; = i ¢l _ "
about transcript fractions ZM C; = [ =
J Zj Cjlj 73

We can also take nucleotide fractions by taking into
account the effective length of each transcript

This tells us how much of the total RNA | will explain the effective length later. For
pool comes from each transcript now, think of it as a "corrected" length
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Converting to relative abundances

=

1

S~
~

The transcript fraction normalizes
nucleotide fraction by the effective length

T;

.
S
[
Q\"|§

Adjusts for the fact that longer transcripts generate more reads
s gives the relativ ndan f each transcriptj
This gives the relative abundance of each transcript TPMi:’Ti°106

The transcript fraction tells us the proportion of total
RNA molecules in the sample that come from transcript/ TPM is "Transcripts
per million"
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Transcript-Fragment Assignment Matrix

Z is a binary matrix (i.e., all values are 0 or 1)
of M transcripts (rows) and N fragments (columns)

(oe‘\"\ @eo’& @eo‘\\\
Q(a% Qﬁa% Q@q’
I /11 /19 ... JIN | Transcript 1
/91 Zos ... Zon Transcript 2
7 =
Zyv1 Lme ... Zyn | Transcript M

Z; ; = 1 if fragment is assigned to transcript



Z example

fo
f-, o I f,o 1
= fs flo:f : fe
Suppose we have 3 ? e fis
t ipt d12f t /‘\&/\\
ranscripts an ragments ) A /‘A/\
t1 Lo t3

fi 2 f3 fa fs f6 [r Js fo fio fu fio

. . 1 0 0 0100000 O0 0]
Zis just how we computationally 01000011010 olt
assign fragments to transcripts 00 1 1 010010 1 1l
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Generative model inference

Known from organism and experiment
Given these inputs, generate a

distribution of fragments

t1 to t3
Transcript-fragment Transcript - - ——__
assignment abundance Run 1 —— =
 Z11 Zis ... ZiN | T ] T —— -
Zor Lo ... ZaN
Z — . . . . T] — : _—
_ZMl ZMg ce ZMN_ LM Run 2 o -
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Probability of observing the
sequence fragments

Which scenario is more likely, given our generative model?

We can use probabilistic methods to find
parameters that explain our observed distirbution

_ fo Jrz fo
fi= 1 ]{7 - fs I3 ];11 f10_ j; . J;}11
’ Y= fa f162 f5= f4 19
fo
A AN s A
tl t2 t3 tl t2 t3
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Conditional probability notation

P (alb) This reads, "What is the probability of
a occurring if b is true?"

Example

P (Rain|Radar)

Given this Radar, what is the
probability of Rain in Oakland?

31



Probability of observing the
sequenced fragments

P (F|T,n, Z)
I Given these paramEterS, how
Available probable is it that our experiment
transcripts generated these observed reads?

. -Z11 le ZlN- -_— e — -
Transcript Toi Zow . Ton - == = —
fragment Z-=| . — : —_— -
assignment Zvr Zuz oo Zun — - -

] 71
Transcript :

’r’:
abundance
| 1IN |




After today, you should be able to

4. Describe how salmon handles experimental biases in transcriptomics data.

5. Communicate the principles of inference in Salmon.
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Probability of observing the
sequenced fragments

We can now compute the probability of observing:  Set of fragments F

Transcriptome 1’

Given
Transcript assignment 4 Transcript abundance 7
P (fjlti)
N M
P(F\|n,Z,T) = H Z n: P (f;|t;) Probability of observing fragment f;
j=1 i=1

given that it comes from transcript t;

This expression accounts for all possible transcripts a fragment might come
from, weighted by how likely that fragment is to come from each transcript

34



Fragment probabilities

P (filt:) is a conditional probability that depends on the
T position of the fragment within the transcript, the
length of the fragment, and any technical biases

In Salmon’s quasi-mapping approach, this probability
IS approximated based on transcript compatibility
rather than exact positions.

P (f;|t;) = P (fragment length, position, GC content, .. .)
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Positional bias

Fragments that include transcript
ends might be too short

Fragments from central regions are more likely
to be of optimal length for sequencing reads

A transcript’s effective length adjusts for
the fact that fragments near the ends of a
transcript are less likely to be sampled

~

L =l — l; <

Mean of the truncated empirical

Hi fragment length distribution

36



After today, you should be able to

5. Communicate the principles of inference in Salmon.



Introduction to inference in Salmon

e Inference refers to the process of estimating transcript abundances
from observed RNA-seq reads using statistical models.

e Salmon’'s inference process involves estimating the most likely
abundance of each transcript that could explain the observed set of

fragments (reads).
e |t does this by solving a complex, high-dimensional problem where

each fragment might map to multiple transcripts.
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Two-phase inference in salmon

Salmon processes reads in two stages

Online phase Offline phase

Refines these initial

Makes fast, initial estimates estimates using more
of transcript abundances as complex optimization
the reads are processed techniques

This two-phase approach balances
speed (in the online phase) with
accuracy (in the offline phase)

39



Online phase:
Stochastic variational inference



Initial estimates using quasi-mapping

Quasi-mapping is A fast, lightweight technique used to
associate RNA-seq fragments with possible transcripts

Read mapping Essentially early stopping of read mapping

GAT h(k) [7,14] Alignment is expensive, so quasi-
................................................................ mapping stops after identity seeds
CCGTATCGATTGCAGATG This is what initializes compatible

‘ ’ transcripts and abundance

|dentify seeds, then extend and

compute base-by-base alignment n & Number of fragments mappting to ¢

Total number of fragments

41



Iteratively update parameters
based on mini batches

Take current = Compute derivatives , Update parameters
parameters = from batch (i.e., abundances)
Mini-batch 1
Repeat for - ey
each batch = = E——

Mini-batch 2 Mini-batch 3

42



Offline Phase:
Expectation-Maximization (EM)
algorithm



Offline phase fine tunes
transcript abundance

After the online phase, Salmon refines the estimates using a more
complex optimization method, typically based on the Expectation-
Maximization (EM) algorithm

This phase ensures the accuracy of abundance estimates,
incorporating the bias corrections learned during the online phase
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Likelihood of the Data

The likelihood function is central

N M
to the inference process in Salmon: LialF,Z,T} = H Z;mPr ilti}
]1=1 1=

This is the probability of observing the entire set of fragments F,
given the transcriptome T and nucleotide fractions n

Optimize the estimates of q, a vector of the estimated 5, o
number of reads originating from each transcript Y.

The goal is to maximize this likelihood to infer the most likely values
of n, which correspond to the relative abundances of the transcripts
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Maximum Likelihood Estimation
(MLE)

The goal of maximum likelihood is to find the
parameters (transcript abundances) that maximize the
probability of the observed data (sequenced reads)

. o N M
The likelihood function is central L{c|F,Z,T} =[] #Pr{ft}

to the inference process in Salmon: i

Optimize the estimates of q, a vector of
the estimated number of reads originating
from each transcript

Given @, n can be directly computed.
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Why the EM Algorithm Maximizes the
Likelihood

The EM algorithm works by breaking down a
difficult problem into two simpler problems:

e |n the E-step, we estimate the missing
information (the assignment of
fragments to transcripts) using the
current transcript abundance
estimates.

e |n the M-step, we use the estimated
assignments to update the transcript
abundances, improving the likelihood.

At each iteration, the likelihood of
the observed data increases, and
the EM algorithm iteratively refines
the transcript abundance estimates
until it reaches a maximum

47



Before the next class, you should

Lecture 09: Lecture 10:
Quantification Differential gene expression
O = = e mmm o EE .. .- .- - - - ¢
Today Thursday

e AO4 is due Friday
e Study for exam
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