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Announcements

 is due Friday by 11:59 pmA04
Exam is next Thursday (Oct 3rd)
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https://pitt-biosc1540-2024f.oasci.org/assessments/assignments/04/


After today, you should be able to

1.  Discuss the importance of normalization and quantification in RNA-seq data analysis.

2.  Explain the relevance of pseudoalignment instead of read mapping.

3.  Understand the purpose of Salmon's generative model.

4.  Describe how salmon handles experimental biases in transcriptomics data.

5.  Communicate the principles of inference in Salmon.
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Let's pause and look at the big picture

Suppose we have isolated a
normal and cancerous cell

CancerousNormal

We want to identify possible drug targets
based on overexpressed genes

We will use transcriptomics!
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Defining our transcriptome

Let's simplify our problem to
only three transcripts

t2 t3t1

These represent the only mRNA transcripts we
will find in our cells (i.e., the transcriptome)

l >3 l >2 l1They have short, medium, and long lengths
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Defining our gene expression

We have the following transcript distributionNormal
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Cancerous

Relative to others?

More transcripts?



We have to normalize our transcriptome
before making comparisons

2 3 4

We can use transcripts fraction

≈
9
2

0.22 ≈
9
3

0.33 ≈
9
4

0.44
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Ratios are sensitive to total amount

Normal

Cancerous

≈
9
2

0.22 ≈
9
3

0.33 ≈
9
4

0.44

≈
15
4

0.27 ≈
15
6

0.4 ≈
15
5

0.33

Because the cancer cell is transcribing more
overall, we still get changes across the board
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Scaling data to "parts per million"

Real data has more than three transcripts and
ratios are substantially smaller (e.g., 0.000001)

This can make computations and communications challenging, so
we often scale everything to a million to use unsigned integers

Transcript Normal Cancerous
1 222,222 266,666

2 333,333 400,000

3 444,444 333,333

Total 1,000,000 1,000,000

⋅
t∑ i

ti 106

Small floats require high precision
(i.e., float64) and thus memory
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Wait, what about sequencing depth?

RPK =
Gene length in kilobases
Read counts for gene

t2 t3t1

Longer transcripts will have more reads
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Read per kilobase (RPK) corrects
this experimental bias through
normalization by gene length

(Length is usually just the exons)



RPK example

RPK =1 Gene length in kilobases
Read counts for gene

t2 t3t1
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Reads per kilobase of transcript per
million reads mapped

RPKM = 109
Total reads ⋅ Transcript length
Reads mapped to transcript

Transcripts per million

TPM = 106
RPKM∑i i

RPKM
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After today, you should be able to

1.  Discuss the importance of normalization and quantification in RNA-seq data analysis.

2.  Explain the relevance of pseudoalignment instead of read mapping.

3.  Understand the purpose of Salmon's generative model.

4.  Describe how salmon handles experimental biases in transcriptomics data.

5.  Communicate the principles of inference in Salmon.
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Traditional quantification
uses read mapping
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Transcriptome

Reads/Fragments

We assign each read to single transcript
using our read mapping algorithms

Once aligned, we can count the number
of mapped reads to each transcript

1
2

4



Bowtie 2 uses
Burrows-Wheeler
Transform to map
and quantify reads
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Spliced Transcripts Alignment
to a Reference (STAR)

Maximum Mappable Prefix (MMP) approach
for fast, accurate spliced alignments

Finds prefix that perfectly matches reference
then repeats for unmatched regions

This automatically detects junctions
instead of relying on databases
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Suppose someone took library
books (transcripts) and then

shredded them (reads)

In the context of our analogy, we
not only need to find the book
but which page it was from

This takes a long time

Alignment-based methods need
to determine the read's exact
position in the transcript

Alignment-based methods are
computationally expensive
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Identifies which transcripts are
compatible with the read, skipping

the precise location step

Pseudoalignment finds which
transcript, but not where

Analogy: Just find books that are compatible
and don't worry about which page

It does not worry about where
within that transcript it originated
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19

Alignment

Pseudoalignment

Specifies where exactly in the
transcript this read came from

(e.g., at position 478)

Specifies that it came somewhere
from this transcript (i.e., compatible)



Pseudoalignment: This method, used by tools like Kallisto, skips the full
alignment process. Instead of mapping each read to a specific position,

pseudoalignment identifies which transcripts are compatible with a given read

Bypassing alignment accelerates
quantification

Pros: Faster and less resource-intensive
than alignment-based methods
Cons: It may lack certain details, such as the
position and orientation of reads, which are
useful for correcting technical biases
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After today, you should be able to

1.  Discuss the importance of normalization and quantification in RNA-seq data analysis.

2.  Explain the relevance of pseudoalignment instead of read mapping.

3.  Understand the purpose of Salmon's generative model.

4.  Describe how salmon handles experimental biases in transcriptomics data.

5.  Communicate the principles of inference in Salmon.
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Let's understand our problem
Initial sample

Fragments

Reads
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We have to use reads to
quantity our initial sample

Has some number
of transcripts

After PCR amplification
and fragmentation

Sequencing with
imperfections



What is a generative model?

Generative model: A statistical model that explains how the
observed data are generated from the underlying system
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Defines a computational framework that produces
sequencing reads from a population of transcripts

First, we have to define our model



Salmon's mathematical
definition of a transcriptome

T = t ,… , t , c ,… , c{( 1 M ) ( 1 M )}
Our whole

transcriptome

Individual
transcripts

Transcript
counts

t2 t3t1

24

T

c =1 2

M = 3

c =2 3 c =3 4



Salmon's formulation of
transcript abundance

So far, we have been talking
about transcript fractions

η =i
c∑j

M
j l
~
j

cil
~
if =i

c∑j
M

j

ci

c =1 2 c =2 3 c =3 4

We can also take nucleotide fractions by taking into
account the effective length of each transcript

This tells us how much of the total RNA
pool comes from each transcript

=l
~
1 200
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=l
~
2 300 =l

~
3 400

I will explain the effective length later. For
now, think of it as a "corrected" length

η =
η1
η2
η3



Converting to relative abundances

The transcript fraction tells us the proportion of total
RNA molecules in the sample that come from transcript i

τ =i
∑j=1

M

l
~
j

ηj

l
~
i

ηi

TPM =i τ ⋅i 106

The transcript fraction normalizes
nucleotide fraction by the effective lengthτi

This gives the relative abundance of each transcript i

Adjusts for the fact that longer transcripts generate more reads

TPM is "Transcripts
per million"
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Transcript-Fragment Assignment Matrix

Z =

Z11
Z21

⋮
ZM1

Z12
Z22

⋮
ZM2

…
…

⋱
…

Z1N
Z2N

⋮
ZMN

Transcript 1
Transcript 2

Transcript M

...

Fragment 1

Fragment 2

Fragment N
...

Z is a binary matrix (i.e., all values are 0 or 1)
of M transcripts (rows) and N fragments (columns)

if fragment j is assigned to transcript iZ =i,j 1
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Z example

t1 t2 t3

f1
f5

f7
f8f10
f2

f9
f11

f3 f6
f4 f12
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Z =
1
0
0

0
1
0

0
0
1

0
0
1

1
0
0

0
0
1

0
1
0

0
1
0

0
0
1

0
1
0

0
0
1

0
0
1

t1
t2
t3

f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12

Suppose we have 3
transcripts and 12 fragments

Z is just how we computationally
assign fragments to transcripts



Generative model inference

t1 t2 t3

Known from organism and experiment

Transcript-fragment
assignment

Transcript
abundance

Z =

Z11
Z21

⋮
ZM1

Z12
Z22

⋮
ZM2

…
…

⋱
…

Z1N
Z2N

⋮
ZMN

η =

η1

⋮
ηM

29
N and M are same as experiment

Given these inputs, generate a
distribution of fragments

Run 1

Run 2



Probability of observing the
sequence fragments

t1 t2 t3
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f1
f5

f7
f8f10
f2

f9
f11

f3 f6
f4 f12

t1 t2 t3

f1
f5

f7
f8f10
f2

f9
f11

f3

f6

f4 f12

Which scenario is more likely, given our generative model?

We can use probabilistic methods to find
parameters that explain our observed distirbution



Conditional probability notation

P a∣b( ) This reads, "What is the probability of
a occurring if b is true?"

P Rain∣Radar( )

Given this Radar, what is the
probability of Rain in Oakland?

=

Example
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Probability of observing the
sequenced fragments

P F ∣T , η,Z( )
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Z =

Z11
Z21

⋮
ZM1

Z12
Z22

⋮
ZM2

…
…

⋱
…

Z1N
Z2N

⋮
ZMN

η =

η1

⋮
ηM

Available
transcripts

Transcript-
fragment

assignment

Transcript
abundance

Given these parameters, how
probable is it that our experiment
generated these observed reads?

Optimize these values until we
get the highest probability



After today, you should be able to

1.  Discuss the importance of normalization and quantification in RNA-seq data analysis.

2.  Explain the relevance of pseudoalignment instead of read mapping.

3.  Understand the purpose of Salmon's generative model.

4.  Describe how salmon handles experimental biases in transcriptomics data.

5.  Communicate the principles of inference in Salmon.
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Probability of observing the
sequenced fragments

We can now compute the probability of observing: Set of fragments

Given:
Transcript assignment Transcript abundance

P F ∣η,Z,T =( ) η P f ∣t
j=1

∏
N

i=1

∑
M

i ( j i)

P f ∣t( j i)

Probability of observing fragment

given that it comes from transcript

fj

ti

This expression accounts for all possible transcripts a fragment might come
from, weighted by how likely that fragment is to come from each transcript

F

Z η

Transcriptome T
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Fragment probabilities

P f ∣t( j i) is a conditional probability that depends on the
position of the fragment within the transcript, the
length of the fragment, and any technical biases

In Salmon’s quasi-mapping approach, this probability
is approximated based on transcript compatibility

rather than exact positions.

P f ∣t =( j i) P fragment length, position,GC content,…( )
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Positional bias

36

A transcript’s effective length adjusts for
the fact that fragments near the ends of a

transcript are less likely to be sampled

=l
~
i l −i μi

li

Fragments from central regions are more likely
to be of optimal length for sequencing reads

Fragments that include transcript
ends might be too short

η =i
c∑i ili
~

cili
~

Mean of the truncated empirical
fragment length distribution

μi

<l
~
i li



After today, you should be able to

1.  Discuss the importance of normalization and quantification in RNA-seq data analysis.

2.  Explain the relevance of pseudoalignment instead of read mapping.

3.  Understand the purpose of Salmon's generative model.

4.  Describe how salmon handles experimental biases in transcriptomics data.

5.  Communicate the principles of inference in Salmon.
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Introduction to inference in Salmon

Inference refers to the process of estimating transcript abundances
from observed RNA-seq reads using statistical models.
Salmon’s inference process involves estimating the most likely
abundance of each transcript that could explain the observed set of
fragments (reads).
It does this by solving a complex, high-dimensional problem where
each fragment might map to multiple transcripts.
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Two-phase inference in salmon

Online phase

Makes fast, initial estimates
of transcript abundances as

the reads are processed

Offline phase
Refines these initial

estimates using more
complex optimization

techniques

This two-phase approach balances
speed (in the online phase) with
accuracy (in the offline phase)

Salmon processes reads in two stages
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Online phase:
Stochastic variational inference
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Initial estimates using quasi-mapping
Quasi-mapping is A fast, lightweight technique used to
associate RNA-seq fragments with possible transcripts

Alignment is expensive, so quasi-
mapping stops after identify seeds

Essentially early stopping of read mapping

GAT [7, 14]h(k)

Read mapping

CCGTATCGATTGCAGATG

Identify seeds, then extend and
compute base-by-base alignment

41

This is what initializes compatible
transcripts and abundance

η ≈t Total number of fragments
Number of fragments mappting to t



Iteratively update parameters
based on mini batches
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Mini-batch 1

Mini-batch 2 Mini-batch 3

Take current
parameters

Compute derivatives
from batch

Update parameters
(i.e., abundances)

Repeat for
each batch



Offline Phase:
Expectation-Maximization (EM)

algorithm
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After the online phase, Salmon refines the estimates using a more
complex optimization method, typically based on the Expectation-
Maximization (EM) algorithm

Offline phase fine tunes
transcript abundance

This phase ensures the accuracy of abundance estimates,
incorporating the bias corrections learned during the online phase
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Likelihood of the Data

The likelihood function is central
to the inference process in Salmon:

This is the probability of observing the entire set of fragments ,
given the transcriptome  and nucleotide fractions 

F

T η

The goal is to maximize this likelihood to infer the most likely values
of , which correspond to the relative abundances of the transcriptsη

L α∣F ,Z,T ={ } Pr f ∣t
j=i

∏
N

i=1

∑
M

ηî { j i}

Optimize the estimates of α, a vector of the estimated
number of reads originating from each transcript

=ηî
α∑j j

αi
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Maximum Likelihood Estimation
(MLE)

The goal of maximum likelihood is to find the
parameters (transcript abundances) that maximize the
probability of the observed data (sequenced reads)

L α∣F ,Z,T ={ } Pr f ∣t
j=i

∏
N

i=1

∑
M

ηî { j i}

Optimize the estimates of α, a vector of
the estimated number of reads originating

from each transcript

Given α, η can be directly computed.

The likelihood function is central
to the inference process in Salmon:
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Why the EM Algorithm Maximizes the
Likelihood

The EM algorithm works by breaking down a
difficult problem into two simpler problems:

In the E-step, we estimate the missing
information (the assignment of
fragments to transcripts) using the
current transcript abundance
estimates.
In the M-step, we use the estimated
assignments to update the transcript
abundances, improving the likelihood.

At each iteration, the likelihood of
the observed data increases, and

the EM algorithm iteratively refines
the transcript abundance estimates

until it reaches a maximum
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Before the next class, you should

 is due Friday
Study for exam
A04

Lecture 10:
Differential gene expression

Lecture 09:
Quantification

Today Thursday
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