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Announcements

 is due tomorrow by 11:59 pm
Will post A04 solutions Monday morning

A04

All I am doing this weekend is grading
 is one week from today (October 2nd)

The review guide will be posted tomorrow
Exam
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https://pitt-biosc1540-2024f.oasci.org/assessments/assignments/04/
https://pitt-biosc1540-2024f.oasci.org/assessments/exams/bioinformatics/


After today, you should be able to

Why are we learning about

differential gene expression?
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What is Differential Gene Expression?

Differential Gene Expression (DGE): The process of identifying and quantifying
changes in gene expression levels between different sample groups or conditions

Sample Collection: Gather samples from different conditions (e.g.,
healthy vs. diseased).
RNA Sequencing (RNA-seq): Quantify gene expression levels using
high-throughput sequencing technologies.
Read Mapping and Quantification: Align RNA-seq reads to a
reference genome and quantify expression (e.g., using Salmon).
Statistical Analysis: Identify genes with significant expression
differences between conditions.
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Case study: Breast cancer

Objective: Identify genes differentially expressed
between triple-negative breast cancer (TNBC) and
hormone receptor-positive breast cancer
Findings:

TNBC shows upregulation of genes involved in
cell proliferation and metastasis.

Implications:
Targets for specific therapies.
Improved classification and prognosis of breast
cancer subtypes.

Differential gene expression provides statistical tools
to identify changes between samples 6



After today, you should be able to

Explain the purpose of statistical models and

hypothesis testing
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What is a statistical model?

A statistical model is a mathematical tool that
describes how data are generated

Gene expression

Normal Cancerous

1. Is there an apparent difference in gene
expression between the two conditions?

2. If so, is it real, or could it have happened
by random chance or experimental flaws?
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It helps us answer:

Statistical models help us make sense of complex data by
identifying patterns and determining whether differences

are meaningful or just due to chance



Hypothesis testing in RNA-seq data

After fitting a statistical model, we need to perform hypothesis testing to see if
the difference in expression between conditions is statistically significant

Null Hypothesis (H₀): There is no difference in gene
expression between the two conditions

Gene expression

Normal Cancerous
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Alternative Hypothesis (H₁): There is a significant
difference in gene expression between the conditions

We have two hypotheses:

We reject the null hypothesis when our statistical test demonstrates that the
observed difference, if any, is unlikely to have happened by random chance 



The P-value is the probability of
the null hypothesis being true

What is the probability that any difference is either (1) nonexistent
or (2) due to random chance (i.e., "getting lucky")

Probability value (p-value):

The higher the p-value, the more our
model supports the null hypothesis

The lower the p-value, the more our model
supports the alternative hypothesis

Gene expression

Normal Cancerous

p ≈ 0.9999
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Gene expression

Normal Cancerous

p ≈ 0.00001



Differential gene expression
uses statistical models for

hypothesis testing
Ensures that we are not biasing our

data or our interpretation
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After today, you should be able to

Discuss the challenges of working with gene

expression data
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The nature of count data
RNA-seq generates count data – the number of RNA
fragments that map to each gene

Gene expression

Normal Cancerous

Example: 573,282 TPM
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Discrete data requires us to
use special statistical tools

Data that can only take specific values (like
whole numbers)
In RNA-seq, we measure the number of
reads mapped to a gene, so the data are
count-based
You can't have "half a read" or a decimal
number of reads.

What is discrete data:

For example, you cannot use a
normal distribution because it

requires continuous data



Binomial: A Simple Model for
Discrete Counts

The Binomial distribution models the number of
successes in a fixed number of independent trials,
where each trial has the same probability of success

n

k

P

p

P X = k =( ) p 1 − p
k! n− k !( )

n! k ( )n−k

Number of trials

Number of successes

Probability

Probability of success

RNA-seq analogy: Each read can be
considered a "trial," and the probability

that a read maps to a specific gene is the
"probability of success."
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Limitations of Binomial
distributions for RNA-Seq

Main limitation: Assumes that the probability of success is constant
between samples
Smaller limitation 1: The number of possible trials can be very large,
especially when sequencing at a high depth
Smaller limitation 2: The probability of expression is very small for many
genes because they are either lowly expressed or not at all

P X = k =( ) p 1 − p
k! n− k !( )

n! k ( )n−k

Computations with low p and high n are
computationally demanding

The Poisson distribution simplifies
computation and allows for

varying probabilities
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Poisson distribution: A baseline for
modeling discrete counts

The Poisson distribution is a statistical tool used to
model the number of events (or counts) that
happen in a fixed period of time or space, where:

The events are independent of each other
Each event has a constant average rate

P X = k =( )
k!

λ ek −λ

λ Expected average of X

k Number of events or counts

P Probability
Provides an accurate distribution of counts if your

mean and variance are approximately equal
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Poisson distribution becomes
inaccurate when variance > mean

RNA-seq data are noisy (i.e., high variance)
and incompatible with Poisson distribution
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Parity plots with mean and variance show
deviations with Poisson distributions

Count mean

Count
variance

Mean = variance line

Higher counts typically
have a larger variance
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Overdispersion in RNA-Seq
Overdispersion: It happens when the variance in the data is larger than what is
predicted by simpler models (e.g., Poisson distribution)

Expected variance for Poisson-distributed data equals the mean: Variance=μ
Variance is often larger than the mean for RNA-Seq: Variance>μ

Overdispersion may reflect biological
variability between samples not captured
by the experimental conditions

Differences in RNA quality
sequencing depth,
biological factors like different cell types
within the same tissue
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Negative Binomial distribution
accounts for high dispersion

P (X = k) =
k! Γ( )

α
1

Γ(k + )
α
1 (

1 + αμ

1 ) α
1

(
1 + αμ

αμ )
k

Γ ⋅( ) Gamma function, which generalizes
the factorial to floats

k Observed number of counts 

μ Mean or expected value of counts

α
Dispersion parameter, controlling how
much the variance exceeds the mean

Var(X) = μ+ αμ2

If , the Negative Binomial
distribution reduces to the

Poisson distribution

α=0
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The Challenge of zeros in RNA-seq data

RNA-seq data frequently contains zero counts for some
genes because not all genes are expressed under all conditions

Most statistical models account for variance,
but not that zeros can dominate counts

For example, if we have a high expected
mean with Poisson distribution we can

still have zeros or very low counts

In these circumstances, we have to
use zero-inflated models

We will ignore these for now
21



After today, you should be able to

Discuss fitting of statistical models
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Why are statistical models
important in RNA-seq?

RNA-seq data is messy: counts vary, there are lots of zeros, and
data doesn’t follow simple patterns

Step 1: The model looks at the data from both groups
Step 2: It considers how much variation there is within each group
Step 3: The model calculates how likely it is to see the average difference if
there is no real difference between the groups (just by chance)

We need models to account for this complexity and figure out which
genes are differentially expressed in a meaningful way
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Define the model for each gene
A statistical model predicts each sample's count data
(number of reads mapping to each gene)

It accounts for the mean (average expression for a gene) and the
dispersion (how much the expression varies across samples)
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Fit parameters using
optimization algorithms

MLE tries to find the model parameters
that make the observed counts most likely

We use maximum likelihood estimation (MLE) to estimate the
parameters  (mean) and  (dispersion) for each gene.
MLE finds the values of the parameters that maximize the likelihood of
observing the data given the model.

μ α

It does this by adjusting the model until the
predicted counts match the actual counts as
closely as possible (i.e., minimize the error)
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After today, you should be able to

Understand statistical tests used for

gene expression data
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Wald’s Test for Gene
Expression Differences

Wald’s Test: A statistical test that helps us determine whether the
estimated log fold change between two conditions is significantly
different from zero.
Null Hypothesis (H₀): The log fold change between conditions is zero
(no difference in expression between the conditions).

Log Fold Change (β₁) = 0 means that the gene is expressed at the
same level in both conditions.

Alternative Hypothesis (H₁): The log fold change between conditions is
not zero (there is a difference in expression).
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Log Fold Change

Positive Log Fold Change: Indicates higher expression in
the condition of interest (e.g., diseased).
Negative Log Fold Change: Indicates lower expression in
the condition of interest.
Log Fold Change of Zero: Means no difference between
conditions.
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Estimate Parameters from the
Negative Binomial Model

For each gene, the Negative Binomial model
gives us an estimated log fold change β̂1

It also gives us a standard error (SE) for this estimate, which tells
us how uncertain we are about the estimate of log fold change

SE (β̂1)

The Wald statistic is calculated as Wald statistic =
SE (β̂1)

β̂1

This statistic tells us how many standard deviations the
estimated log fold change is away from zero (no difference)
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Likelihood Ratio Test
To compute a p-value, a likelihood ratio test (LRT) can be used

The idea is to compare the likelihood of the data under

the null model (same expression in both conditions)
the alternative model (different expression levels in each condition)

Log-Likelihood of
Negative Binomial

logL(r,μ∣X) = X log +(
μ+ r

μ ) r log(
μ+ r

r )

For each condition, you
compute the log-likelihoods:

L =A logL(r ,μ ∣X )
i

∑ A A i

L =B logL(r ,μ ∣X )
i

∑ B B i
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LRT Statistic
The LRT statistic is: LRT = −2 logL − logL + logL( null ( A B))

logL =null logL(r ,μ ∣X )
i

∑ 0 0 i
The log-likelihood under the null hypothesis

(assuming a common mean  for both conditions)μ
0

The LRT statistic approximately follows a
chi-squared distribution with 1 degree of
freedom under the null hypothesis

The p-value is computed as:

p = 1 − F (LRT)χ1
2

k would be 1 31



After today, you should be able to

Interpret common visualizations used in

differential expression analysis

32



Visualizing Significance vs. Magnitude
of Expression Changes

Interpretation:

Top Corners: Genes with high
significance and large fold changes
(both upregulated and downregulated)
Center: Genes with little to no change
or low significance

A volcano plot displays the relationship
between each gene's statistical significance
(p-value) and the magnitude of change
(fold change).
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MA Plots
An MA plot visualizes the relationship between the average
expression (A) and the log fold change (M) for each gene.

Interpretation:

Center Line (M=0): No
change in expression
Spread: Indicates variability
in fold changes across
different expression levels

Usage: Identifying trends or
biases in expression data, such
as mean-dependent variance.
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Heatmaps

Components:

Rows: Genes
Columns: Samples
Color Intensity: Represents
expression level (e.g., red for
upregulation, blue for
downregulation)

A heatmap displays the expression levels of multiple
genes across different samples using color gradients

Interpretation:  Identifying clusters of co-expressed genes
and sample groupings based on expression profiles.
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Principal Component Analysis (PCA) Plots
PCA transforms high-dimensional gene expression data into

principal components that capture the most variance

Axes: Principal components representing
the most significant sources of variation

Interpretation:

Sample Clustering: Samples from
similar conditions cluster together.
Outliers: Samples that do not group with
others may indicate technical or
biological variability.

Usage: Assessing batch effects, overall data
structure, and sample quality
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Before the next class, you should

Turn in A04
Study for exam
Treat yourself

Review
Lecture 10:

Differential gene expression

Today Tuesday
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