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Are you a PEER undergrad interested

in trying biology research?

The Promoting PEERs Program is recruiting for 2024-5!

We have several openings for undergraduate Persons Excluded due to
Ethnicity or Race (PEERs) to be mentored and gain experience in a BioSci
research lab during the Spring 2025 semester

Who can apply: Pitt undergrads who are PEERs, not yet in a research lab (lab
courses don’t count), but interested in getting experience doing
biology research

What is required: e Three 1-hour prep meetings in Fall 2024
e 5+ hours/week to devote to research in Spring 2025
Six 1-hour mentoring meetings in Spring 2025

What you'll gain: ¢ Close mentoring from peers, grad students, and faculty
e Professional development support

e Experienceinaresearch lab
L ]

A strong foundation for future research opportunities

Apply here: https://tinyurl.com/peers2024

Apply by Oct 15th 2024




Anhouncements

e AO4 is due tomorrow by 11:59 pm
= Will post AO4 solutions Monday morning

e All I am doing this weekend is grading
e Exam is one week from today (October 2nd)

= The review guide will be posted tomorrow



https://pitt-biosc1540-2024f.oasci.org/assessments/assignments/04/
https://pitt-biosc1540-2024f.oasci.org/assessments/exams/bioinformatics/

After today, you should be able to

Why are we learning about

differential gene expression?



What is Differential Gene Expression?

Differential Gene Expression (DGE): The process of identifying and quantifying
changes in gene expression levels between different sample groups or conditions

e Sample Collection: Gather samples from different conditions (e.g.,
healthy vs. diseased).

e RNA Sequencing (RNA-seq): Quantify gene expression levels using
high-throughput sequencing technologies.

e Read Mapping and Quantification: Align RNA-seq reads to a
reference genome and quantify expression (e.g., using Salmon).

e Statistical Analysis: Identify genes with significant expression
differences between conditions.



Case study: Breast cancer

125 4 | !

e Objective: Identify genes differentially expressed
between triple-negative breast cancer (TNBC) and " 7
hormone receptor-positive breast cancer e el

e Findings: 75 - m .

= TNBC shows upregulation of genes involved in M . ‘?wcag
cell proliferation and metastasis. 5.0 - &Eﬁ 3%/, Y Rl o o’
e Implications: .
______________ e i
m Targets for specific therapies. 25 - T A
» [mproved classification and prognosis of breast
cancer subtypes. .
B
Log: fold change

Differential gene expression provides statistical tools
to identify changes between samples



After today, you should be able to

Explain the purpose of statistical models and

hypothesis testing



What is a statistical model?

A statistical model is a mathematical tool that
describes how data are generated

Gene expression
It helps us answer:

1. Is there an apparent difference in gene
expression between the two conditions?

2. 1f so, is it real, or could it have happened | I
by random chance or experimental flaws? I

Normal Cancerous

Statistical models help us make sense of complex data by
identifying patterns and determining whether differences
are meaningful or just due to chance



Hypothesis testing in RNA-seq data

After fitting a statistical model, we need to perform hypothesis testing to see if
the difference in expression between conditions is statistically significant

We have two hypotheses: Gene expression

Null Hypothesis (H,): There is no difference in gene
expression between the two conditions

Alternative Hypothesis (H;): There is a significant | | I | ‘ I I ‘ I | I

difference in gene expression between the conditions Normal Cancerous

We reject the null hypothesis when our statistical test demonstrates that the
observed difference, if any, is unlikely to have happened by random chance



The P-value is the probability of
the null hypothesis being true

Probability value (p-value):

What is the probability that any difference is either (1) nonexistent
or (2) due to random chance (i.e., "getting lucky")

The higher the p-value, the more our The lower the p-value, the more our model
model supports the null hypothesis supports the alternative hypothesis

p ~ 0.9999 " | ||I|I p ~ 0.00001
Lislil

Normal Cancerous Normal Cancerous



Differential gene expression
uses statistical models for
hypothesis testing

Ensures that we are not biasing our
data or our interpretation
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After today, you should be able to

Discuss the challenges of working with gene

expression data
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The nature of count data

RNA-seq generates count data - the number of RNA :
Gene expression
fragments that map to each gene

Example: 573,282 TPM

What is discrete data: | I
Normal Cancerous

e Data that can only take specific values (like
whole numbers)

e |In RNA-seq, we measure the number of Discrete data requires us to
reads mapped to a gene, so the data are use special statistical tools
count-based

e You can't have "half a read" or a decimal -

or example, yOU cannot use a
number of reads. normal distribution because it

requires continuous data
13



The Binomial distribution models the number of
successes in a fixed number of independent trials,
where each trial has the same probability of success

N O3S ™ N

Binomial: A Simple Model for
Discrete Counts

5

0.2

¢ p=0.5 and n=20
p=0.7 and n=20
® p=0.5 and n=40

0.10 0.15 0.20
1

0.05

n!

P(X =k)= F(1—p)*

( ) k! (n_ k)!p ( p) § sesedoccbene® ’...T .............
Probability 0 i i i i
Number of successes RNA-seq analogy: Each read can be

considered a "trial," and the probability
that a read maps to a specific gene is the

Probability of success "probability of success.”

Number of trials
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Limitations of Binomial
distributions for RNA-Seq

e Main limitation: Assumes that the probability of success is constant

between samples
e Smaller limitation 1: The number of possible trials can be very large,

especially when sequencing at a high depth
e Smaller limitation 2: The probability of expression is very small for many

genes because they are either lowly expressed or not at all

n!

n—k
P(X =k)= B (1 — k)!Pk (1-p) The Poisson distribution simplifies
computation and allows for
Computations with low p and high n are varying probabilities

computationally demanding
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Poisson distribution: A baseline for
modeling discrete counts

The Poisson distribution is a statistical tool used to
model the number of events (or counts) that
happen in a fixed period of time or space, where:

e The events are independent of each other
e Each event has a constant average rate

Aeeg=A
k!

P(X=k) =
P Probability

k  Number of events or counts

A Expected average of X

0.40
0.35
0.30
— 025}
\gozo—
S 015
0.10
0.05
0.00

Provides an accurate distribution of counts if your
mean and variance are approximately equal
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0.40 —
0.35
0.30

025}

\;’/ 0.20 |

015}
0.10
0.05

0.00

Poisson distribution becomes
Inaccurate when variance > mean

RNA-seq data are noisy (i.e., high variance)
and incompatible with Poisson distribution

Frequencies

Log2 RPKM
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Parity plots with mean and variance show
deviations with Poisson distributions

Mean = variance line

Higher counts typically
have a larger variance

Count
variance

Count mean
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Overdispersion in RNA-Seq

Overdispersion: It happens when the variance in the data is larger than what is
predicted by simpler models (e.g., Poisson distribution)

e Expected variance for Poisson-distributed data equals the mean: Variance=p
e Variance is often larger than the mean for RNA-Seq: Variance>pu

Overdispersion may reflect biological
variability between samples not captured
by the experimental conditions

e Differences in RNA quality

e sequencing depth,

e biological factors like different cell types
within the same tissue
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()

Negative Binomial distribution
accounts for high dispersion

X =k = F]j!’f;(r;%) (1 +1au)é (1 jl;u)k

Var(X) = p + ap?
Observed number of counts

Mean or expected value of counts If a=0, the Negative Binomial

Dispersion parameter, controlling how d'St”F’Ut'O”dr.edL{;eS to the
much the variance exceeds the mean Poisson distribution

Gamma function, which generalizes
the factorial to floats
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The Challenge of zeros in RNA-seq data

RNA-seq data frequently contains zero counts for some
genes because not all genes are expressed under all conditions

Most statistical models account for variance, 0.40

but not that zeros can dominate counts 0.35 F

0.30 |

For example, if we have a high expected ok

mean with Poisson distribution we can h a0l
still have zeros or very low counts =

015 F

0.10 f

In these circumstances, we have to
use zero-inflated models

We will ignore these for now

© A=1

® \=1

o AN=10 |
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After today, you should be able to

Discuss fitting of statistical models
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Why are statistical models
iImportant in RNA-seq?

RNA-seq data is messy: counts vary, there are lots of zeros, and
data doesn't follow simple patterns

We need models to account for this complexity and figure out which
genes are differentially expressed in a meaningful way

e Step 1: The model looks at the data from both groups

e Step 2: It considers how much variation there is within each group

e Step 3: The model calculates how likely it is to see the average difference if
there is no real difference between the groups (just by chance)
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Define the model for each gene

A statistical model predicts each sample's count data
(number of reads mapping to each gene)

e |t accounts for the mean (average expression for a gene) and the
dispersion (how much the expression varies across samples)

0.15- 0.251
0.20
20.10- Py
‘B oup & 0.191 roup
& FBF 5o0.10- éEﬂ%F
© 0.051 o 0'05
0.00- . : 0.004! , : ;
0 5 10 15 0 3 6 9

expression value of gene FN1 expression value of gene GTF2HS5
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Fit parameters using
optimization algorithms

e We use maximum likelihood estimation (MLE) to estimate the
parameters u (mean) and a (dispersion) for each gene.

e MLE finds the values of the parameters that maximize the likelihood of
observing the data given the model.

— Initial guess
MLE tries to find the model parameters N
that make the observed counts most likely
é§ 0.02
It does this by adjusting the model until the
predicted counts match the actual counts as |
closely as possible (i.e., minimize the error) 000 |

40 50 60 70 80 90

Waiting time between eruptions (min)
25



After today, you should be able to

Understand statistical tests used for

gene expression data

26



Wald’s Test for Gene
Expression Differences

e Wald's Test: A statistical test that helps us determine whether the

estimated log fold change between two conditions is significantly
different from zero.

e Null Hypothesis (Ho): The log fold change between conditions is zero
(no difference in expression between the conditions).

= Log Fold Change (B1) = 0 means that the gene is expressed at the
same level in both conditions.

e Alternative Hypothesis (H;): The log fold change between conditions is
not zero (there is a difference in expression).

27



Log Fold Change

e Positive Log Fold Change: Indicates higher expression in
the condition of interest (e.g., diseased).

e Negative Log Fold Change: Indicates lower expression in
the condition of interest.

e Log Fold Change of Zero: Means no difference between
conditions.

28



Estimate Parameters from the
Negative Binomial Model

For each gene, the Negative Binomial model A
gives us an estimated log fold change b1

It also gives us a standard error (SE) for this estimate, which tells SE (B )
us how uncertain we are about the estimate of log fold change L

By
SE (5

The Wald statistic is calculated as Wald statistic =

This statistic tells us how many standard deviations the
estimated log fold change is away from zero (no difference)
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Likelihood Ratio Test

To compute a p-value, a likelihood ratio test (LRT) can be used

The idea is to compare the likelihood of the data under

e the null model (same expression in both conditions)
e the alternative model (different expression levels in each condition)

For each condition, you

Log-Likelihood of compute the log-likelihoods:

Negative Binomial

=31 X;
)+rlog( 4 ) La ;Ogﬁ(rAaﬂA\ )

nw+r

log L(r, u| X) = X' lo
g L(r, u|X) g(u+r

Ly =) logL(rg, us|Xi)
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LRT Statistic

The LRT statisticis:  LRT = —2 (log Lyun — (log L4 + log Lg))

log Ly = Zlogﬁ(ro 1| X:) The log-likelihood under the null hypothesis
y (assuming a common mean K for both conditions)

The LRT statistic approximately follows a Filz) %

chi-squared distribution with 1 degree of LOT

freedom under the null hypothesis 0.8+ —
0.6 1 b1
' — k=2

The p-value is computed as: 0.47 =

— k=6
p=1-— FX% (LRT) 0.2 / = kg8

0.0 —_— >

o 1 2 3 4 5 6 7 8 %
k would be 1



After today, you should be able to

Interpret common visualizations used in

differential expression analysis
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Visualizing Significance vs. Magnitude
of Expression Changes

Negatvie Change in <:\'7fzf:m BOiIEIT?:} gPositivepChar!ge i
: : : geneexpression _«» Q] ekaiz," - 7 TOSEEECL
A volcano plot displays the relationship [ iemEScas B wA :
between each gene's statistical significance r 3
(p-value) and the magnitude of change y &l
(fold change).
CD12 -
Interpretation: §8 i 2
e Top Corners: Genes with high 5 g,
significance and large fold changes

=

(both upregulated and downregulated) ki oy

in differential gene expression % 3

e Center: Genes with little to no change ~ * BN | A
Or |OW Slgnlflcance 0 | Statistically insignificant change : |

in differential gene expression , :
-6 -4 =2 0 2 4 6
Fold Change (log>)




MA Plots

An MA plot visualizes the relationship between the average
expression (A) and the log fold change (M) for each gene.

Interpretation: e i
e Center Line (M=0): No T N Ny il kel
change in expression i —
e Spread: Indicates variability ] SRR
in fold changes across ] wow
different expression levels $ B o

Usage: Identifying trends or
biases in expression data, such e IR
as mean-dependent variance. | ' T T

is mapped to x and

— 3 —  transfomed to logl0
Mormalized mean crale
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Heatmaps

A heatmap displays the expression levels of multiple
genes across different samples using color gradients

components: Sample3  Sample4 SumplﬂErFﬁ_l

e Rows: Genes

e Columns: Samples

e Color Intensity: Represents
expression level (e.g., red for
upregulation, blue for
downregulation)

+6

L1 @ @
@ @ @
= = =
@™ @ @
o @ -

Interpretation: Identifying clusters of co-expressed genes
and sample groupings based on expression profiles.
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Principal Component Analysis (PCA) Plots

PCA transforms high-dimensional gene expression data into
principal components that capture the most variance

Axes: Principal components representing
the most significant sources of variation

Interpretation: o1 "

PCA 2 (14%)

e Sample Clustering: Samples from
similar conditions cluster together.

e Outliers: Samples that do not group with
others may indicate technical or

biological variability. ;

0
PCA1 (28%)

Usage: Assessing batch effects, overall data
structure, and sample quality

batch

NA19098.r1
NA19098.r2
NA19098.r3
NA19101.r1
NA19101.r2
NA19101.r3
NA19239.r1
NA19239.r2
NA19239.r3

detected

@ 7000
@ 8000

@ 9000
@ 10000

@ 11000

individual
s NA19098

4 NA19101
5 NA19239
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Before the next class, you should

Lecture 10:
Differential gene expression Review
O = = e mmm o EE .. .- .- - - - ¢
Today Tuesday
e Turnin AO4

e Study for exam
e Treat yourself
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