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Anhouncements

No class on Tuesday (10/15)

No office hours (mine or UTA) next week - will resume on 10/22

Will have Programming+ recitations

AO5 will be posted tomorrow

David Baker, John Jumper, and Demis Hassabis won the Nobel Prize in
Chemistry for "computational protein design" and "protein structure prediction"

HE NOBEL PRIZE
IN CHEMISTRY 2024




After today, you should be able to

Why are we learning about protein

structure prediction?



Why predict protein structure?

Protein structure dictates interactions,
signaling, and biochemical roles

Experimental methods (X-ray, Cryo-EM) provide high-resolution
structures but are resource-intensive and time-consuming



Structural insights can
accelerate ... everything?

e Drug Discovery: Designing small-molecule inhibitors or antibodies that
target specific protein conformations.
e Biotechnology: Engineering proteins for industrial or therapeutic

applications.
e Disease Research: Mutations causing structural defects linked to
diseases like Alzheimer’s and cystic fibrosis.



Prediction is critical for
the future of biology

Advances in predictive accuracy are
opening new frontiers in biology

Integrating predictive models with
experimental data is the way forward

Structure prediction complements genomics
and transcriptomics to create a holistic
understanding of biological function



After today, you should be able to

ldentify what makes structure

prediction challenging



What makes structure prediction
hard: Conformational space

Proteins can adopt a large number
of possible conformations

Levinthal’s Paradox: A protein can't sample all
conformations in a biologically reasonable time,
yet it folds quickly

Example: A protein with 100 amino acids, each capable
of adopting about 3 torsion angles, results in ~ 3%
possible conformations




What makes structure prediction
hard: Complex energy landscape

A potential energy surface (PES) is a
represents the energy of a system as a
function of the positions of its atoms

Understand how the system's energy
changes upon reactions or movements

Proteins fold to the lowest free-energy
state, but this landscape is highly rugged

Energy calculations are computationally

intensive and depend on accurate force fields
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What makes structure
prediction hard: Flexibility
and dynamics

Proteins are not static; they adopt multiple
conformations (flexibility) based on their
environment or interactions with other molecules

Some proteins or regions do not adopt a
fixed 3D structure but remain disordered or
flexible under physiological conditions
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What makes structure prediction hard:
Environmental effects

Proteins fold differently in Predictions need to capture interactions
different environments with solvent molecules, ions, and cofactors

pH-gated

/MHX K+ channel

AlphaFold 3

Example: Predicting transmembrane protein structures, where the
lipid bilayer plays a key role in folding, is particularly complex.
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https://www.rcsb.org/structure/7mhx

What makes structure prediction
hard: Post-translational modifications

PTMs such as phosphorylation,
glycosylation, and methylation can
alter protein folding and function

Example: elF4E is a eukaryotic translation
initiation factor involved in directing
ribosomes to the cap structure of mMRNAs

Ser209 is phosphorylated by MNK1

AlphaFold 3 accurately predicts these
changes when they are already known
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What makes structure prediction
hard: Methods are data driven

Our predictions rely on similarity to known structures, but novel
sequences or folds (for which no homologous structures exist) are
difficult to predict accurately

Example: AlphaFold has made strides, but predicting de novo structures
remains challenging, especially for proteins with no templates
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After today, you should be able to

T~

Explain homology modeling




Homology modeling predicts protein structures
based on evolutionary relationships

The main principle is that proteins with similar
sequences tend to fold into similar structures

Common tools for homology modeling include
MODELLER, SWISS-MODEL, and Phyre2

Homology modeling is the most accurate when
sequence identity to other proteins is high (>30%)

&3 swiss-MoDEL®
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Hidden Markov Models (HMMs) Capture
Evolutionary Patterns in Proteins

HMMs are statistical models representing sequences using
probabilities for matches, insertions, and deletions

Start with a multiple 2 BOG--F
sequence alignment seq3 NCGgF D™
seqd TCG-WQ  geletion

" 123 14 5
Insertions / deletions can 'Ir\l gv 5
Essentially more be modelled A N
| 3 2 C G :

robust alignments =

Occupancy and amino acid Q\—° > M2 w3,
frequency at each position in \ Y | \ |

the alignment are encoded :‘1;5 \.? \ "DaY\ s
Y 3 G Go G &

. 0> | (2
Profile created VAR VRS
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A Markov model predicts outcomes
based on transitional probabilities

Suppose | collect weather data in Pittsburgh
for the past 30 days: Sunny, Cloudy, or Rain

| want to figure out how to predict Tomorrow's
tomorrow's weather based on today's weather

Sur.my Cloludy Ra:in
Example: If today is cloudy, syl 03

there is a 57% chance it will

be Sunny tomorrow Transition

probability

Today's
weather

Cloudy

To State
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We can represent these states and

probabilities as a (cursed?) graph
Each edge represents the probability of transitioning from one state to the next

Sunny|

037 O. 15\
' 37
To State '

Sunny Cloudy Rain

sunny 0.37 0.27 0.37

Cloudy |

Rain
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Hidden Markov models also include
additional information in "hidden states"

Suppose my friend lives in a remote
location where it is either Rainy or Sunny

| cannot look up the weather but | have
last year's weathers reports Hidden states

My friend can only tell me

e Walking
e Shopping Obervables
e Cleaning

We know how weather patterns
transitions, but we don't have
this information from our friend

Note: If we had previous observable data, we could
fit/learn transition probabilities of hidden states

19



HMMs Model Protein Sequences as a
Series of Probabilistic States

Hidden states represent the underlying biological

events that are not directly observable
seql ACG
seqe SCG

e Match states: conserved ot TCG- ..‘é\deleﬂm
positions in the sequence 1231’45
e Insertion states: positions N W
where extra residues are added 1 i”SE”iD"E E
e Deletion states: positions S C G Y Q
where residues are missing ( 3 M “““*_E_"E
Observables are the actual amino D)D) H(D3)

acids (residues) in the protein | Y
sequence that we can observe _&0 _gl\1 312 GI‘S




HMMER Uses HMMs to Search Protein
Databases for Homology
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SWISS-MODEL

MTLSILVAHDLORVIGFENQLPWHLPNDLKHVKKLSTGHTL
VMGRKTFESIGKPLPNRRNVVLTSDTSFNVEGVDVIHSIED
IYOLPGHVFIFGGOQTLFEEMIDKVDDMYITVIEGKFRGDTF
FPPYTFEDWEVASSVEGKLDEKNTIPHTFLHLIRKK

DHFR (UniProt)

& SWISS-MODEL® Modelling Repository Tools Documentation Login Create Account

sSWISS—MODEL“

is a fully automated protein structure homology-modelling server, accessible via the Expasy web server.

The purpose of this server is to make protein modelling accessible to all life science researchers worldwide.

Start Modelling

Repository

Every week we model all the sequences for thirteen core species based on the latest UniProtkB proteome. Is your protein
already modelled and up to date in SWISS-MODEL Repository?

\5' /J
" ‘...\

Q, | search SWISS-MODEL Repository

swissmodel.expasy.org
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https://swissmodel.expasy.org/
https://www.uniprot.org/uniprotkb/P0A017

SWISS-MODEL
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SWISS-MODEL
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SWISS-MODEL
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Novel proteins are too challenging
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After today, you should be able to

Know when to use threading

instead of homology modeling

28



Why Use Threading?

In cases where sequence similarity to known structures
is low (< 30%), homology modeling becomes unreliable

Threading matches sequences to known structural folds
based on structural rather than sequence similarity

Phyre2, RaptorX, MUSTER, and I-TASSER are commonly used
for threading and takes much longer than homology modeling
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After today, you should be able to

Interpret a contact map for protein

structures
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Contact Maps Visualize Residue
Interactions |n Protelns

A contact map is a 2D representation of
which residues are in close proximity

Each point on the map corresponds to
two residues that are close in 3D space

mapiya.lcbio.pl
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Contact Maps Represent Spatial
Proximity, Not Sequence Order

Contacts are determined by spatial proximity, Residues far apart in the sequence can still be close
typically within a certain distance threshold in the 3D structure, reflected in the contact map
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Residues on the diagonal are adjacent
In sequence (and spatially)
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After today, you should be able to

Comprehend how coevolution

provides structural insights
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The Rise of Machine Learning in
Structural Biology

Traditional methods like homology modeling and
threading rely on templates and known structures

ML predicts 3D structures only from sequence data

AlphaFold (DeepMind) and RosettaFold (Baker Lab)
lead the charge in this area
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What is AlphaFold?

Developed by DeepMind, AlphaFold predicts protein structures with atomic
accuracy by using deep learning models trained on large structural datasets

Breakthroughs

e AlphaFold 2 achieved near-experimental level accuracy in the 2020
CASP14 competition (Critical Assessment of protein Structure Prediction)

e AlphaFold 3 (2024) predicts proteins, DNA, RNA, ligands, and post-
translational modifications
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Coevolving residues mutate in a
correlated manner

Mutations in one residue often result in This is observed across species
compensatory mutations in its through analysis of homologous
interacting partner protein sequences

Correlated mutations indicate functionally significant residue pairs

@0, 0,0,0,9,0,0,0,0,,0,0,0,04°
R D
R D
R D
Lys (positive) E E Glu (negative)
K E
Trp (hydrophobic) ﬁ 3 Val (hydrophobic)
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Evolutionary Analysis Reveals
Structural Insights

Residues showing correlated
mutations are likely to be spatially
close in the folded protein

Coevolution analysis helps predict which
residues are close in the 3D structure

This is particularly useful when no experimental structure is available

N 90000000000 0000 ¢ b
) B
l_J inference
A D N
K E
-—
) - traint
K c constra C
W v contact in 3D
w V
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Multiple Sequence
Alignments Enable
Coevolution Detection

Coevolution is detected using large
MSAs from homologous proteins

The more diverse the sequences in
the MSA, the better the resolution
of coevolving residues

Evolutionary information from
MSAs guides predictions for
residue-residue contacts
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Coevolution example: DHFR

Residues with a high Score (i.e., coevolve) are near each other
in the protein's structure (i.e., small distance)

-
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Coevolutionary signals can be noisy

Not all correlated mutations are due to
direct physical interactions; some may be
indirect

Noise in the data can come from
random mutations or insufficient
evolutionary diversity. i

Large and diverse sequence data sets -
are needed for reliable coevolution
predictions.
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Machine learning leverages coevolution for
high-accuracy predictions

. : HE NOBEL PRIZE
AlphaFold and RosettaFold utilize N CHEMISTRY 2024

coevolutionary data from MSAs to
predict residue interactions

These models incorporate evolutionary
information along with structural features,
leading to highly accurate predictions
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After today, you should be able to

Explain why ML models are dominate

protein structure prediction
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AlphaFold pipeline, simplified

Given the following data
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AlphaFold 2 pipeline: Evoformer

Using MSAs and contact maps, DeepMind trained a
model to predict protein structures
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Contact maps are converted into
dihedral angles

Pair | Lk ® ® ;
representation W‘. o .59‘1

(r.r.c)

d -~ | 8 blocks (shared weights)

and compute all
atom positions
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Predict relative
rotations and

translations )
Ay
- © e ! — o
Backbone frames s
(r, 3x3) and (r,3) Backbone frames
(initially all at the origin) \_ (r, 3x3) and (r,3) J
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Recycling iteration 0, block 01
Secondary structure assigned from the final prediction
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https://s3.amazonaws.com/media-p.slid.es/videos/1510246/AJVk2V3X/41586_2021_3819_moesm4_esm.mp4

What is new in AlphaFold 3?

Biggest change is the use of a diffusion model

Diffusion models essentially learn to unscramble atoms into a structure

ER
Network
trunk l 1
module A o T module T T
(inference) | AT “ e (training) i e
; Lo :
E 48 samples - | Loss
______ 20 iterations S
mini rollout Permute
ground |
truth
Ground - : -
truth \ @ »| Confidence | menu

Y

@ o module ___"

Metrics

Loss
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AlphaFold 3 is supercharged for
any biomolecule

Proteins, DNA, RNA, ligands, PTMs, protein-proteins, etc.
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AlphaFold 3

MTLSILVAHDLORVIGFENQLPWHLPNDLKHVKKLSTGHTL
VMGRKTFESIGKPLPNRRNVVLTSDTSFNVEGVDVIHSIED
IYOLPGHVFIFGGOQTLFEEMIDKVDDMYITVIEGKFRGDTF
FPPYTFEDWEVASSVEGKLDEKNTIPHTFLHLIRKK

DHFR (UniProt)

MGKKEVILLFLAVIFVALNTLVVAVYFRETADEQVVYGK
NNINQKLIQLKDGTYGFEPALPHVGTFKVLDSNRVPQIA
QEIIRNKVKRYLQEAVRIEGTYPIVDGLVNAKYTVANPN
NLHGYEGFLFKDNVPLTYPQEFILSNLDGKVRSLONYDY
DLDVLFGEKEEVKSEILRGLYYNTYTRAFSPYKL

Novel protein
(ChatGPT)

= AlphaFold Server

AlphaFgld Server

Powered by Alphakold'3

G Continue with Google

AlphaFold 3 model is a Google DeepMind and Isomorphic Labs collaboration

How does AlphaFold Server work?

AlphaFold Server is a web-service that can generate highly accurate biomolecular structure predictions
containing proteins, DNA, RNA, ligands, ions, and also model chemical modifications for proteins and nucleic
acids in one platform. It's powered by the newest AlphaFold 3 model.

alphafoldserver.com

51


https://www.uniprot.org/uniprotkb/P0A017
https://alphafoldserver.com/

AlphaFold 3 is a breakthrough,
not the final solution

DHFR
Novel

€ Back & Download |_D Clone and reuse [1 Feedback on structure
& Back &, Download LD Clone and reuse [0 Feedback on structure
Very high (plDDT > 90) Confident (?0 = plDDT = 70) Low (70 > pIDDT = 50) Very low (plDDT < 50)
D S —— O
Very high (pIDDT = 90) Confident (90 » pIDDT > 70) Low (70 = pIDDT = 50) Very low (pIDDT < 50)
ipTM=- pTM=0.95 learn more . ] . ]
ipTM=- pTM=20.2 learn more
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Caveat: Proteins are dynamic


https://www.youtube.com/embed/AjcUmxT-QEA?si=qupqTpuV5IvOB_ut&start=43&enablejsapi=1

What about intrinsically
disordered proteins?

At least 40% of proteins have
disordered regions

AlphaFold (and all other methods)

iz
i J
struggle with disordered regions II S



https://alphafold.ebi.ac.uk/entry/Q6PKG0

Before the next class, you should

Lecture 12: Lecture 13:
Protein structure prediction Molecular simulation princples
‘ --------------------------- -‘
Today Thursday

e Work on AO5
e Review material
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