
Computational Biology
(BIOSC 1540)

Oct 29, 2024

Lecture 16:
Structure-based drug

design

1



Announcements

 is due Thursday by 11:59 pm

Reminder: There is a (soft) limit of 100 words for each question

A06

 (final assignment) will be released FridayA07
No class on Nov 5 for election day
The next exam is on Nov 14

We will have a review session on Nov 12
Request DRS accommodations if needed

 will be released Nov 21 and is due on Dec 10Project
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https://pitt-biosc1540-2024f.oasci.org/assessments/assignments/06/
https://pitt-biosc1540-2024f.oasci.org/assessments/assignments/07/
https://pitt-biosc1540-2024f.oasci.org/assessments/project/


After today, you should better understand

Drug development

pipeline
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Drug development is a complex, multi-stage process
requiring significant time and resources

1. Discovery and Preclinical Research
Potential drugs are identified and
tested in non-human studies

2. Clinical Trials
Testing in human subjects to
assess safety and efficacy

3. Regulatory Approval
Evaluation by agencies like the FDA
before the drug can be marketed

4. Post-Marketing Surveillance:
Ongoing monitoring after the drug
is available to the public

Computation is most
helpful with the drug
discovery stage
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Identifying the right protein target is crucial
for developing effective and safe drugs

Proteins regulate nearly all cellular processes and
drugs can inhibit or activate proteins to correct
disease states

Criteria for Selecting a Protein Target

Disease Relevance: The protein plays a critical
role in the disease mechanism.
Druggability: The target has a structure that
allows it to bind with drug-like molecules.
Specificity: Targeting the protein minimizes
effects on healthy cells, reducing side effects.

Example:   is a critical signaling
enzyme that controls B-cell development, maturation, and
activation by mediating B-cell receptor signal transduction

Bruton’s tyrosine kinase (BTK)

(Mohamed et al., 2009)
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https://www.uniprot.org/uniprotkb/Q06187/entry
https://doi.org/10.1111/j.1600-065X.2008.00741.x


Now we can use ...

(  & )Vetrie et al., 1993 Tsukada et al., 1993

BTK gene was implicated in X chromosome-linked
agammaglobulinemia (XLA) 

Genome-wide association studies,
high-throughput screening

Target identification is
accelerated with bioinformatics
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https://doi.org/10.1038/361226a0
https://doi.org/10.1016/0092-8674(93)90667-F


( ; ; )Aokl et el., 1994 Weers et al., 1994 Saouaf et al., 1994 ( )Singh et al., 2018

Revealed that BTK as a central hub in B-cell
receptor (BCR) signaling

Target identification
is accelerated with
bioinformatics

Now we can use ...

Proteomics, transcriptomics
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https://doi.org/10.1073/pnas.91.22.10606
https://doi.org/10.1016/S0021-9258(19)51014-6
https://doi.org/10.1073/pnas.91.20.9524
https://doi.org/10.1186/s12943-018-0779-z


With a protein target in hand, we can
now identify potential drug candidates
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After today, you should better understand

Role of structure-based

drug design
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Chemical space contains an astronomical
number of possible compounds to explore

Effective drugs must bind to the target protein
with sufficient affinity and specificity

Estimated to be between 10  to
10  possible small organic molecules

60

200

We need methods to navigate chemical space and
identify promising leads accurately and efficiently
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High-throughput screening (HTS) allows testing of
thousands of compounds against the target protein

Library Preparation: Collection of
diverse compounds
Assay Development: Design of biological
assays to measure compound activity
against the target
Screening: Compounds are tested in
miniaturized assays
Data Analysis: Identification of "hits"
that show desired activity
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Virtual screening evaluates vast libraries to
identify potential leads efficiently

Experimental assays are still expensive, and
limited to commercially available compounds

Instead, we can use computational
methods to predict which compounds
we should experimental validate

Can screen millions to billions of compounds in
silico, thereby dramatically expanding our search space
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After today, you should better understand

Thermodynamics of

binding
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Selective binding to a protein is governed
by thermodynamics (and kinetics)

Protein Ligand

Binding

Protein-ligand

Binding occurs when a compound/ligand
interacts specifically with a protein

We can model this as a reversible
protein-ligand binding

P + L⇋ PL
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Binding affinity is determined by the
Gibbs free energy change

The change in free energy when a
ligand binds to a protein

ΔG =bind G −PL G −P GL

Determines binding process spontaneity
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Gibbs free energy combines
enthalpy and entropy

ΔG =bind ΔH −bind TΔSbind

ΔHbind
ΔSbind

EntropyEnthalpy

Accounts for energetic
interactions

How much conformational
flexibility changes

Note: Simulations capture free energy directly instead of
treating enthalpy and entropy separately
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After today, you should better understand

Enthalpic contributions

to binding
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Enthalpy accounts for noncovalent interactions

Noncovalent interactions: Electrostatics,
hydrogen bonds, dipoles, π-π stacking, etc.

Ensemble differences in noncovalent
interactions provide binding enthalpy

ΔH =bind H −⟨ PL⟩ H −⟨ P ⟩ H⟨ L⟩

⋯⟨ ⟩

Ensemble
average
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https://s3.amazonaws.com/media-p.slid.es/videos/1510246/O_dbiTlX/output.mp4


Chemical interactions are determined
by fluctuating electron densities

Our noncovalent interactions conceptual framework:

3. Regions of increased electron density are
associated with higher partial negative charges

4. Electrons are mobile and can be
perturbed by external interactions

1. Coulomb's law describes the
interactions between charges

Molecular interactions are governed by their
electron densities (Hohenberg-Kohn theorem)

This is rather difficult, so we often use
conceptual frameworks to explain trends
(e.g., hybridization and resonance)

2. Molecular geometry uniquely specifies
an electron density
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https://s3.amazonaws.com/media-p.slid.es/videos/1510246/9fsx9_5A/electrons.mp4


Electrostatic forces govern interactions
between charged and polar regions

Charged molecules have a net imbalance between

Positive charges in their nuclei
Negative charges from their electrons

This leads to net electrostatic attractions or
repulsions between different atoms or molecules

Arginine

Glycine

~5 to 20 kcal/mol per interaction

Long-Range Interaction: Can attract ligands
to the binding site from a distance

Anchor Points: Often serves as key anchoring
interactions in the binding site

Role in binding
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Hydrogen bonds are a type of
electrostatic interactions

Attraction between a (donor) hydrogen atom covalently
bonded to an electronegative atom and another
(acceptor) electronegative atom with a lone pair

~2 to 7 kcal/mol per hydrogen bond

Strongest when the hydrogen, donor,
and acceptor atoms are colinear

Common donors: O-H, N-H groups
Common acceptors: O and N atoms with lone pairs

Specificity : Precise orientation of the ligand

Stabilization : Moderately strong interactions

Role in binding

Dynamic : Allows for adaptability of ligands
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Uneven electron distribution creates
partial charges and dipoles

Electronegativity differences lead to
unequal distribution of electron density

Unequal distribution results in regions or
partial positive or partial negative charges

Consistent electron density spatial
variation results in permanent dipoles

~0.01 to 1 kcal/mol per interaction

Directional binding: Highly directional,
ensuring that the ligand aligns correctly

Flexibility: Can accommodate slight
conformational changes

Role in binding
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Van der Waals forces are weak,
non-directional interactions

Dispersion: Electrons in molecules are constantly
moving, leading to temporary uneven distributions that
induce dipoles in neighboring molecules

~0.4 to 4 kcal/mol per interaction

Complementary fit : Maximizes surface contact

Flexibility: Allows small conformational changes

Role in binding

Induction: The electric field of a polar molecule
distorts the electron cloud of a nonpolar
molecule, creating a temporary dipole

23



π-π interactions involve
stacking of aromatic rings

Noncovalent interactions between
aromatic rings due to overlap of
π-electron clouds

~1 to 15 kcal/mol per interaction

Edge-to-face DisplacedFace-to-face

Orientation : Proper positioning of aromatics

Selectivity: Recognition of ligands

Role in binding
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Summing all of these
contributions during a

simulation provides our
ensemble average

H⟨ AB⟩
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https://s3.amazonaws.com/media-p.slid.es/videos/1510246/UTCRPsM3/config-3.mp4


After today, you should better understand

Entropic contributions

to binding
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Entropy accounts for microstate
diversity of a single system state

One of Alex's esoteric points: "Entropy is disorder," is a massive
oversimplification that breaks down in actual practice

Entropy is formally defined as  S = k lnΩB

is the total number of microstates available to the
system without changing the system state

Ω

Entropy is "energy dispersion"

Higher entropy implies greater microstate diversity

"System state" can be arbitrarily
defined and compared as

Unbound ligand vs. bound ligand
Unfolded protein vs. folded protein
Liquid water at 300 K vs. 500 K
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Grid-based protein-ligand binding

Suppose I have a system with

Protein receptor
Ligands positioned on a grid

My macrostate (number of particles,
temperature, and pressure) remain constant

How many ways can I rearrange the ligands
without binding to the receptor?

L

N

Number of ligands

Number of sites

Ω =
L! N − L !( )

N !

Number of ways to choose L grid sites out of
N is the binomial coefficient
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Grid-based protein-ligand binding

Ω =
(L− 1)! N − L+ 1 !( )

N !

What if one ligand binds to the receptor?

How does entropy change?

Increase No change Decrease

It depends on our ligand
concentration!

How to interpret this: Pick a number of ligands and
move to the right (L - 1), does entropy go up or down?
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For protein-ligand binding, we need to
account for how the number of

accessible microstates/configurations
for protein and ligand

30



After today, you should better understand

Alchemical free

energy simulations
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We can now run molecular
simulations of different states

ΔG =PL G⟨ PL⟩ G⟨ P ⟩ G⟨ L⟩− −

To compute the free energy of a "system state", we
have to compute the state's partition function, Z

We can run simulations and directly compute the
ensemble average free energy

This is theoretically valid
but not practical. Why?

G =⟨ ⟩ −k T lnZB
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Exact partition functions
include all microstates

To compute the partition function of protein;
for example, we need to know the energy for

All possible conformations (folded, partially folded, unfolded)
All possible atomic positions (backbone and sidechains)
All possible velocities of the atoms
All possible rotational states
All possible vibrational states

This is
impossible

Fortunately, the low-energy conformations
contribute the most to the partition function

Molecular simulations can sample some low-energy
conformations; however, minor errors will drastically
impact absolute free energy calculation

e−βE
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What if we slowly disappear the ligand?
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ΔG1 ΔG2 ΔG3 ΔG4

λ = 1.0 λ = 0.5 λ = 0.0

We could use an alchemical parameter,    , to scale
noncovalent interactions between protein and ligand

λ

This allows us to sum relative free energies to estimate
amount of energy to bind/unbind the ligand

ΔG = ΔG∑ i

How does this help us?



Relative free energies are expressed
as a partition function ratio

ΔG = −k T lnZ +B B k T lnZ =B A −k T lnB (
ZA

ZB )The free energy change from state A to
B can be computed as

Advantage: Partition function ratios are dominated by
overlapping microstates common between states A and B

A B

Maintaining phase space overlap ensures more
reliable and converged free energy estimates

(This is conceptually similar to having
a small integration step size.)
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Thermodynamic integration provides a way
to compute free energy differences

ΔG =A→B dλ∫
0

1 ⟨
∂λ

∂U(λ)⟩
λ

We can to integrate over these
small free energy changes 

We can use this to reliably calculate
the free energy difference between

bound and unbound states
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Alchemical simulations are
actually very expensive

We use "docking" to more efficiently screen molecules
before (if ever) doing alchemical simulations
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Before the next class, you should

Work on A06

Lecture 16:
Structure-based drug design

Today Thursday

Lecture 17:
Docking and virtual screening
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https://pitt-biosc1540-2024f.oasci.org/assessments/assignments/06/

